
Process Book

Rehan Mulakhel, Noemi Romano, Raja Soufi
Department of Computer Science, EPFL Lausanne, Switzerland

I. INTRODUCTION

Over human history, thousands and thousands of mete-
orites fell to the Earth ground; chunk of rock and metal
disagreggating in the atmosphere, hitting the ground and
causing sometimes vast disasters from natural and econom-
ical point of view.

Where are the points which have the most chances to be
hit? Can we trust the data gathered? Why do some places
have less chances to be receive rocks coming from space?

The goal of this project is to visualize this fascinating
phenomenon occurring over the last centuries by means
of georeferenced location of the impacts recorded by the
Meteoritical society1. In this visualization, our principal aim
is to give a general overview of the spatio-temporal evolution
of this natural phenomenon, emphasizing on the user expe-
rience and the exploration of the data. This visualization
targets a general public who has not strong knowledge in
the field.

II. DATA

The data come from the NASAs Open Data Portal and
have been downloaded from Kaggles platform. The data
were collected by The Meteoritical Society and contain
information on all of the known meteorite landings. The
dataset includes the following fields:
name

The name of the meteorite (typically a location,
often modified with a number, year, composition,
etc).

id
The unique identifier for the meteorite.

nametype
One of: – valid: a typical meteorite – relict: a
meteorite that has been highly degraded by weather
on Earth.

recclass
The class of the meteorite; one of a large number
of classes based on physical, chemical, and other
characteristics.

mass
The mass of the meteorite, in grams.

fall
Whether the meteorite was seen falling, or was

1Meteoritical society: http://www.meteoriticalsociety.org/

discovered after its impact; one of: – Fell: the me-
teorite’s fall was observed – Found: the meteorite’s
fall was not observed.

year
The year the meteorite fell, or the year it was found
(depending on the value of fell).

reclat
The latitude of the meteorite’s landing.

reclong
The longitude of the meteorite’s landing.

GeoLocation
The parentheses-enclose, comma-separated tuple
that combines reclat and reclong.

Rows containing NaN values or presenting a years value
smaller than 1800 and bigger than 2013 will not be consid-
ered in our visualization project. In addition, some of the
entries having coordinates values equal to 0 —referring to
meteorites found in Antarctica of which coordinates were not
given— will not be considered. The data have been cleaned
with R language.

After the cleaning, we end up with a final number of
31, 705 over 45, 716 entries.

III. TOOLS

The visualization is displayed in a browser for usability
reasons: users do not need to download anything. This forces
the application to be split into a front-end and a back-end.

A. Front-end

The main visualization of the globe and falling meteorites
is done with Three.js. The rest of the visualizations (timeline,
class statistics, etc.) were done with D3 and viz.js.

jQuery and Bootstrap were also used.

B. Back-end

Most files necessary for displaying the web page are
served using GitHub pages (the libraries being fetched from
various CDNs except for viz.js).

All the data related to meteorites and countries is saved
on Google Drive and served using a simple Google Apps
Script web app, which also provides a few endpoints to get
filtered or grouped data (see here).

http://www.meteoriticalsociety.org/
https://threejs.org/
https://d3js.org/
http://vizjs.org/
https://github.com/RajaSoufi/GeoMeteorites/tree/master/gds-doc#google-drive-server-documentation


Figure 1: First sketch of the visualization

(a) Sketch of camera FOV for globe (b) Sketch of camera FOV for 2D map

Figure 2: Sketch of camera Field of View (FOV)

IV. EVOLUTION OF VISUALIZATION

The first step was to figure out which visualization could
be appropriate to visualize the spatial distribution of the
meteorites’ impacts. A globe or a map with the georefer-
enced impacts as static points came to our mind, but the
UX would have been limited. That’s why we decided to
animate the trajectory of the meteorite falls, in order to
give a realistic dimension to the data. In order to enforce
the realistic dimension we prioritized the 3D visualization,

hence a globe has been chosen to visualize the geographical
space. To give a more global point of view of the spatial
distribution of this phenomena, the transition from the globe
to a 2D map has been also taken into account.

Having the coordinates of the impacts, it was crucial to get
the country where the meteorites fell. Getting access to the
country implies then a new category of classification, leading
to a local and easier exploration of the data. The local
dimension gave us new ideas for the data representation:

• Visualization of the country related statistics



• A search-bar where the user can enter the country
wished

• The interaction user-globe that allows to click over a
country and see the meteorites falling for the country
selected

• Histogram of the type of meteorite by country

A time-line was by far the easiest way to visualize the
temporal dimension. In order to add an interaction to it,
we decided to allow the selection of an interval of time
to the user. The animation of the meteorites falls will
then be performed in the interval of time selected and
activated/deactivated with a start/pause button.

The first sketch of the visualization, which was drawn
before starting the code, can be seen in figure 1.

A. Globe

Exploring the Mike Bostock’s Blocks [5] we discovered
many tutorials allowing the creation of a globe with d3.js
[6, 7]. These works are performed with the d3.geo library
that allows an easy way to work with geographic information
and different projections.

We then created the globe, but a sticking point came up:
how to handle the meteorites’ animation with d3?

We then explored other javascript libraries that could
handle in a simpler way the animation of 3D objects and
we figured out that the three.js library [3] is the most
suitable one. In fact, this library is a framework built on
top of WebGL which makes it easier to create 3D graphics
in the browser. Another reason why we chose this library
is because we were not obligated to move the objects
themselves, but just moving the main camera around the
globe.

We inspired our globe from another Mike Bostock ex-
ample [2] that shows how to import geoJSON files in
a three.js scene. The three library doesn’t read au-
tomatically objects with geometry as d3 does. First of
all, the geoJSON file containing the countries borders’
multilinestring [1] coordinates are re-projected into spherical
projection. Then, all the starting and ending vertices of the
multilinestring have to be pushed in a three geometry and
a line has to be drawn between all these couples of vertices.

A white sphere was added as well in order not to see
through the globe. In order to have a good view of the globe
and the 2D map, we needed to adapt the main camera FOV
and distances (Figure 2).

After that the camera was well adjusted, we ended up
with the globe illustrated in figure 3.

Figure 3: Globe with three.js

In order to add an interaction to the globe, the user can
zoom-in, zoom-out, and drag the globe. The idea of a 2D
map has also been considered, but our first aim being to
make this visualization as realistic as possible, we finally
decided to only keep the globe.

B. Meteorites’ country

The original dataset provided by Kaggle did not contain
any information about country names. The only way to map
a landing to a country was through the geo coordinates.
Since the csv file contains many thousand rows, it was
impossible to do it manually. This lead us to write a script
in python in order to fetch countries based on the tuple
(latitude, longitude).

Google Maps, which is likely to be the most famous
web app for location, has its services limited to users to
prevent DDoS2 attack. According to their documentation, the
number is limited to a “a few thousands” requests per day
per person. This could have taken more than one week to get
our new data! Clearly, we had to find a solution. That’s why
we dropped the idea of Google Maps and turned towards
Open Street Map, an open source alternative.

Open Street Map also has a system to prevent DDoS
attack. But it does not have a limited number of requests
per day. Actually their api sends the error 429 which stands
for “too many requests”, requiring the script to block for
several minutes. Eventually the script was run on a server
for more than thirty hours.

We created automatically countries’ code, but they did
not mean anything if we ever wanted to analyze with other

2Distributed Denial of Service



countries’ data available. Hence, we redo this process, but
this time with Quantum GIS, an open source GIS3 software.
In this case, we just joined by location the countries vector
layer containing the codes published by the International
Organization for Standardization (ISO) to our meteorites fall
points. This software gave us a general idea of the spatial
distribution of the meteorites (Figure 4).

Figure 4: Meteorites points in Quantum GIS

C. Time-line

The first idea was to create an animation close to a video.
The starting and the ending moments were supposed to be
parameters. The inspiration came from [4], from which parts
of code were taken and adapted to the latest version of ES64.
There was a plot of the number of meteorites group by year
inside the time-line.

Figure 5: Time line with a brushing system. Here with fake
data.

Selecting the time range was not as user friendly as
expected. Instead, a flag with the ‘current’ year (of the
animation) is moving like a cursor which can be dragged
and dropped. In this way, only one button to start and stop
is needed.

Figure 6: Time line with a flag for the year being in the
animation.

The data contains date from 860 to 2016. The plot in
figure 6 shows that most meteorites hit the Earth recently.
This is unlikely to be the reality. We can interpret it like
humans have almost no information on the subject until

3Geographic Information Systems
4ECMAScript 6

the 19th century. This information lead us to only take into
account data between 1801 to 2013.

We had the temporal evolution of the meteorites falls but
still did not give any information about the masses of the
meteorites. We then decided to add to the initial timeline the
average mass per year (Figure 7a,7b).

The last step was to add labels for vertical axes because
the two plots are not intuitive on their own unlike the time
axes.

D. Meteorites animation
After settling up the globe scene, the meteorites animation

needed to be done.
Our first idea was to implement a user interaction with

the meteorites, where the user could choose the origin of
the meteorites and launch it. This idea would have enforced
the UX but it was difficult to choose which meteorite has to
be launch and it was far from our principal idea to represent
the spatio-temporal evolution of this phenomena.

Another idea was to find in the literature the real origin
point of the meteorites, but this idea was soon abandoned
because the time scale of the meteorites was per year and we
did not know what was the rotation axis when the meteorites
fell and it was challenging to place the other asteroids or
planets in our 3D scene.

From the beginning, the main idea of the animation
function is to take as parameters the destination geographical
coordinates and the mass of the meteorite, give it a random
origin point and update its position with a loop until the
destination point. The mass was considered as well so that
the size of the impacts of the meteorites are proportional to
it.

In order to make the meteorites impacts as realistic as
possible, we just created an additional geometry in the
position of the impact and simply expanded it and changed
its opacity with a loop. The meteorite impact is illustrated
in figure 8.

Figure 8: Meteorite impact

The first approach used a function that scheduled hundreds
of other functions at successive timeouts, each incrementing



(a) Sketch of time line with the frequency of the meteorite falls
per year on the top and average mass per year on the bottom

(b) Time line with plots of frequencies (top top) and average
mass (bottom) for each year.

Figure 7: The evolution of the time line from the paper to the final version.

the position of the meteorite. This method lead sometimes
to some bugs in the animation due to the high CPU cost.

The second and final approach consists of calling a
function that simply adds the meteorite to an array while
a separate loop (the rendering loop) iterates over this array
to increment the position of each meteorite. This method
resulted in an important improvement in the animation and
allowed to visualize many more meteorites, up to a few
thousands in some cases, without any bugs.

Furthermore, we tried to add a light object to each
meteorite to improve the realistic falls (Figure 9).

Figure 9: Meteorite impact

Unfortunately, this option was too CPU expensive and
made the browser hang completely in most cases.

E. Search bar

Users may want to choose and change some parameters
like the speed or the dimension of the map (2D vs 3D). The
initial version is shown in figure 10. The opacity was set
to 0.5 in order to let the map (which was not ready at that
time) be visible. When the mouse was hover the box, the
transparency property was removed as long as the mouse
was not outside of it.

Figure 10: The transparent box of parameters of the anima-
tion.

We decided not to include the feature that allows switch-
ing to 2D mode and instead concentrate on the 3D visual-
ization.

Since the visualization is intended to a general public, the
range of the mass is useless. This option was also removed.

What about the animation speed? Our first feeling was
to create something constant over the time. The sparse
number of landing per year makes it impossible. Let’s
assume that we set a constant λ for the speed. Since the
frequencies of the number of meteorites increases, at some
point the number of meteorites in the visualization will reach
a threshold which will cause the visualization to crash. If we
decrease the value of λ, then the animation would become
too slow when the frequency is low. Therefore, the only way
to do it is to make λ changing depending on the frequency.
Thus, the cursor for the speed value was removed too.

Eventually we only kept the country input.

F. Meteorites classification

At the beginning, the meteorite classification was not
taken into account because we did not have any knowledge
in the domain, and targeting a general public, it would have
been an irrelevant information to present. Going deeper in
the domain, we discovered that the type of meteorites de-
pends on the chemical elements of which they are composed
by. The attribute recclass presents more than 300 unique
classes of meteorites that belong to a defined hierarchy well
presented in Weisberg et al. [11].



Figure 11: First sketch of the flows between types of
meteorites and countries

Going up in the nodes of the hierarchy, we ended up
with three main classes that describe the material of the
meteorites: stony, stony-iron and iron.

We firstly checked on the name of the unique classes and
classify them by looking at the first letter of reclass. The
classification was that easy because the stony-iron meteorites
have only two sub-classes (Pallasite and Mesosiderite), and
the iron meteorites are always classified as Iron+code. The
stony class contains much more sub-classes. Giving that iron
and the stony-iron meteorites contain a limited number of
sub-classes, we just checked if the remaining meteorites
classes were actually stony (and it was the case!) and as-
signed to them this class. The latter method was considered
not enough robust, then we classified the stony meteorites
by checking the first letter as well and we obtained the same
result.

This simple classification could then draws more attention
of the user and make him more familiar with this domain.
Indeed, we did not want to go much deeper in the details of
the classes because it could have been useless for the public
targeted.

Concerning the visualization, the first idea that came to
our mind was to make a simple bar-chart for every country
selected (Figure 1).

We soon abandoned this idea because we could have had
only a local point of view. In order to do a comparison with
the other countries and have a more global point of view,
we thought to visualize flows between the type of meteorites
and the different countries (Figure 11).

Firstly we thought to just draw the lines of direct con-
nections between the two different nodes with a constant
thickness. We then realised that a thickness depending on
the mass would have been more informative. The Sankey

Figure 12: First bipartite graph with thickness of flow
depending on the mass

diagram came to our mind to vizualize the flows and a
nice example proposed by Bremer [8] was our inspiration.
Indeed, the latter example propose a Chord diagram in the
form of a bipartite Sankey diagram. We discovered a simply
way to build a bipartite graph with the viz.js library
[9]. This library takes as input parameters the primary key
(meteorites’ classes), the secondary key (countries) and a
value that links the two keys (mass). We first considered all
the countries, but we decided to filter out only the countries
having a total mass of meteorites bigger than 500 kg and
store the other countries as ‘Others’.

The result of our first bipartite graph was as follow (Figure
12):

The percentages that you can see on the right of the
countries correspond to the sum of all meteorites that fell
on that country divided by the mass of all meteorites. If you
mouse over a class of meteorite or a country, it will filter
out the class selected or the country selected as you can see
in figure 13. The percentages update dynamically as well.

Then we noticed that the size of the country biased our
first results. In order not to give a higher weight to the
biggest countries, we divided every mass by the area of
the country where it fell, obtaining then the density of
meteorites by country in g/km2. This time we filtered out
the countries having a density bigger than 1 g/km2 and
store the remaining in ‘Others’. The area of the countries
was calculated thanks to Quantum GIS software, an open
source GIS5 software.

We ended up with the graph in figure 14. Countries as
Australia, United States and China clearly diminished on
importance and Russia was even incorporated to ‘Others’.

5Geographic Information Systems



Figure 13: Bipartite graph - on mouse over stony-iron class

Figure 14: Final bipartite graph with thickness of flow
depending on the density

G. Country statistics

The country statistics panel was from the beginning
thought to appear when a country was selected in the search-
bar. Hence, we tried to figure out which country’s data could
be interesting to visualize.

Firstly, we decided to visualize the mass distribution of
the meteorite falls and find6 and the frequency by meteorite
classes (Figure 15).

As the information of the meteorite classes was already
given with the bipartite graph (Figure 14), the latter option
was abandoned. Furthermore, we decided to do not take
into account the differences between the fell and found
meteorites because the number of fell meteorites was a way

6Meteorites are considered falls if they can be associated with an
observed fall event and finds if they cannot be connected to a recorded
fall event [11].

Figure 15: Sketch of density plot and frequency by element

Figure 16: Sketch meteorite shape

smaller than the found meteorites, leading the comparison
between the two types difficult to interpret.

Another option that was taken into account was to vi-
sualize the three heaviest meteorite recorded that fell in
the selected country. A simple text saying the names and
the masses of the meteorites was considered a too simple
solution; hence, we decided to create a geometry that could
remind a meteorite shape as illustrated in the sketch in figure
16.

We finally opted to only draw the heaviest meteorite by
country since most of the countries had only few entries. The
library three.js was again the best option to visualize
3D shapes. In order to draw the shape desired, we created
a dodecahendrom geometry and pushed random positions to
the its vertices. We obtained the shape presented in figure
17.

Our initial idea was even to click on the meteorite and see
the meteorite falling, but this idea was abandoned as well
for a lack of time.

Concerning the mass distribution, the first problem en-



Figure 17: Heaviest meteorite with three.js

Figure 18: Density plot with many entries with d3.js

countered was that the masses recorded are generally low
and it is difficult to visualize the upper outliers. In order to
have a smaller range and have a more normal distribution,
the mass values considered were transformed in logarithmic
values.

As you can see in Figure 15, the first idea was to plot a
line following the frequency of each mass. With countries
having a big amount of data recorded it worked well (Figure
18), but giving that most of the countries have only few
entries or even only one recorded meteorite, the visualization
showed false information (Figure 19, 20).

We finally opted for a histogram of the mass values, the
simplest but the clearest one. The final country statistics
panel is illustrated in figure 21.

Figure 19: Density plot with one entry with d3.js

Figure 20: Density plot with two entries with d3.js

Figure 21: Final country statistics panel

H. Messages

After setting up all the spatial and statistical visualizations
and going deeper in the domain, we discovered many
funny (and a bit sketchy) stories about meteorites in human
history. This has soon gave us new ideas to represent other
information and make funnier our visualization.

In fact, the International Comet Quarterly publishes a list
of all incidents reported related to meteorites [10]. We took
this data and adapted to make them appear next to the globe.
The text does not appear all at once, but word by word. The
reason behind is that it is easier to see it when a new message
is displayed.

I. Final touches

Many final touches were needed in order to improve the
UX.

Firstly, the texture covering the Earth depends on the user
hour. From 6 p.m. until 6 a.m. the texture of the Earth globe
is a night-time image (Figure 22) . The remaining hours,
the texture is a day-time image with clouds (Figure 23). A
black background with stars upon it has been adopted as
well, leading to the illusion that our planet is being hung
somewhere in the universe.



Figure 22: Night-time texture

Figure 23: Day-time texture

When the user selects a country, the camera zoom-in
to the country desired. This creates more interaction with
the interface. The camera position is taking the extreme
coordinates and the centroid of the country, that have been
still calculated with Quantum GIS.

The layout of all visualization needed to be done as well.
In fact, we did not think at the beginning to resize the
different visualizations depending on the user screen. We
then tried to resize all the elements the more dynamically
as possible.

V. IMPROVEMENTS AND LIMITS

The time was limited, but plenty of ideas came to our
mind in the process of the visualization.

The limits of our visualization are the following:
• The countries’ borders are missing. It is then difficult

to understand where is the country, mostly when the
country have no borders touching the sea

• The meteorites falls are not filtered out by country when
we zoom on a country. Hence, the meteorites falls in
the neighboring countries are seen as well.

• ...

VI. WORK SPLIT AND PEER ASSESSMENT

Rehan Mulakhel
Web page centralizing links to the demo, code and
process book. Brushing time line. Dynamic sug-
gestion for the countries. Country to each meteorite
based on coordinates.

Noemi Romano
Data cleaning, globe visualization (partly), country
statistics, meteorites classification, ISO codes for
countries, getting minimum latitude and longitude
for every country to facilitate the zooming on the
country selected, process book.

Raja Soufi
Globe visualization (partly) as well as falling me-
teorites and world camera animations/movements.
Improvements to various elements such as timeline
and search field, as well as linking the various parts
together.

A. Peer assessment

We discussed together for the peer assessment and every
answer is shared and agreed by every member.

Were they prepared during team meetings?
Everyone was prepared during team meetings.

Did they contribute productively to the team discussion
and work?

Everyone contributed productively to the team discussion
and work.

Did they encourage others to contribute their ideas?
Every member encourage others to contribute their ideas
and everyone had the same weight in the decisions.

Were they flexible when disagreements occurred?
We were all flexible when disagreements occurred and it
was a pleasure to discover the other point of views.

REFERENCES

[1] World Atlas - geojson.
[2] GeoJSON in Three.js, Aug 2017.
[3] three.js - Javascript 3D library, Nov 2017.
[4] Mike Bostock. Brush and Zoom. https://bl.ocks.

org/mbostock/34f08d5e11952a80609169b7917d4172,
2017. [Online; accessed 18-December-2017].

[5] Mike Bostock. Mike Bostocks Blocks - bl.ocks.org.
https://bl.ocks.org/mbostock, 2017. [Online; accessed
17-December-2017].

[6] Mike Bostock. See-Through Globe - bl.ocks.org.
https://bl.ocks.org/mbostock/6746848, 2017. [Online;
accessed 17-December-2017].

https://bl.ocks.org/mbostock/34f08d5e11952a80609169b7917d4172
https://bl.ocks.org/mbostock/34f08d5e11952a80609169b7917d4172
https://bl.ocks.org/mbostock
https://bl.ocks.org/mbostock/6746848


[7] Mike Bostock. This Is a Globe - bl.ocks.org. https:
//bl.ocks.org/mbostock/ba63c55dd2dbc3ab0127, 2017.
[Online; accessed 17-December-2017].

[8] Nadieh Bremer. Hacking a Chord Diagram to visualize
Flows - VisualCinnamon, Dec 2017. [Online; accessed
20. Dec. 2017].

[9] Naushad Pasha Puliyambalath. NPashaP/Viz, Dec
2017. [Online; accessed 20. Dec. 2017].

[10] International Comet Quarterly. Interesting meteorite
falls. http://www.icq.eps.harvard.edu/meteorites.html,
2013. [Online; accessed 18-December-2017].

[11] Michael K. Weisberg, Timothy J. McCoy, and Alexan-
der N. Krot. Systematics and evaluation of meteorite
classification. 2006.

https://bl.ocks.org/mbostock/ba63c55dd2dbc3ab0127
https://bl.ocks.org/mbostock/ba63c55dd2dbc3ab0127
http://www.icq.eps.harvard.edu/meteorites.html

	Introduction
	Data
	Tools
	Front-end
	Back-end

	Evolution of visualization
	Globe
	Meteorites' country
	Time-line
	Meteorites animation
	Search bar
	Meteorites classification
	Country statistics
	Messages
	Final touches

	Improvements and limits
	Work split and peer assessment
	Peer assessment


